Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model
نویسندگان
چکیده
INTRODUCTION Limiting the energy transfer between ventilator and lung is crucial for ventilatory strategy in acute respiratory distress syndrome (ARDS). Part of the energy is transmitted to the viscoelastic tissue components where it is stored or dissipates. In mechanically ventilated patients, viscoelasticity can be investigated by analyzing pulmonary stress relaxation. While stress relaxation processes of the lung have been intensively investigated, non-linear interrelations have not been systematically analyzed, and such analyses have been limited to small volume or pressure ranges. In this study, stress relaxation of mechanically ventilated lungs was investigated, focusing on non-linear dependence on pressure. The range of inspiratory capacity was analyzed up to a plateau pressure of 45 cmH2O. METHODS Twenty ARDS patients and eleven patients with normal lungs under mechanical ventilation were included. Rapid flow interruptions were repetitively applied using an automated super-syringe maneuver. Viscoelastic resistance, compliance and time constant were determined by multiple regression analysis using a lumped parameter model. This same viscoelastic model was used to investigate the frequency dependence of the respiratory system's impedance. RESULTS The viscoelastic time constant was independent of pressure, and it did not differ between normal and ARDS lungs. In contrast, viscoelastic resistance increased non-linearly with pressure (normal: 8.4 (7.4-11.9) [median (lower - upper quartile)] to 35.2 (25.6-39.5) cmH2O.sec/L; ARDS: 11.9 (9.2-22.1) to 73.5 (56.8-98.7)cmH2O.sec/L), and viscoelastic compliance decreased non-linearly with pressure (normal: 130.1(116.9-151.3) to 37.4(34.7-46.3) mL/cmH2O; ARDS: 125.8(80.0-211.0) to 17.1(13.8-24.7)mL/cmH2O). The pulmonary impedance increased with pressure and decreased with respiratory frequency. CONCLUSIONS Viscoelastic compliance and resistance are highly non-linear with respect to pressure and differ considerably between ARDS and normal lungs. None of these characteristics can be observed for the viscoelastic time constant. From our analysis of viscoelastic properties we cautiously conclude that the energy transfer from the respirator to the lung can be reduced by application of low inspiratory plateau pressures and high respiratory frequencies. This we consider to be potentially lung protective.
منابع مشابه
Acute Respiratory Distress Syndrome in a Patient With Suspected Influenza: A Case Report
Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome consisting of tachypnea, refractory hypoxemia, and diffuse opacities on chest radiographs after infection or trauma which ultimately leads to respiratory failure. The principles of treatment are based on patient care in ICU, mechanical ventilation and medical treatments. By using lower plateau, less tidal volume, higher positive ...
متن کاملNonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory
In this paper, a new viscoelastic size-depended model developed based on a modified couple stress theory and the for nonlinear viscoelastic material in order to vibration analysis of a viscoelastic nanoplate. The material of the nanoplate is assumed to obey the Leaderman nonlinear constitutive relation and the von Kármán plate theory is employed to model the system. The viscous parts of the clas...
متن کاملReabsorption atelectasis in a porcine model of ARDS: regional and temporal effects of airway closure, oxygen, and distending pressure.
Little is known about the small airways dysfunction in acute respiratory distress syndrome (ARDS). By computed tomography (CT) imaging in a porcine experimental model of early ARDS, we aimed at studying the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction (FIO2). Six piglets were mechan...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملRespiratory mechanics in patients ventilated for critical lung disease.
Respiratory mechanics, using flow interruption, was previously studied during the complete breath in healthy ventilated man, numerical techniques relieving constraints regarding flow pattern. The classical linear model of non-Newtonian behaviour was found to be valid. The present study was extended to subjects with critical lung disease. Subjects with acute lung injury (ALI; n = 2), acute respi...
متن کامل